Investigación Por S. A. D. Sábado, 06 Junio 2020 08:17
INTELIGENCIA ARTIFICIAL

Una nueva técnica permite identificar anomalías en el tejido pulmonar de los fumadores de forma temprana

Investigadores españoles proponen un método basado en el análisis de datos para detectar con gran precisión cambios sutiles en el pulmón a partir de un TAC

Vote este artículo
(0 votos)

La exposición al humo del tabaco se asocia a una variedad de efectos sobre el tejido funcional del pulmón que conducen al desarrollo de diversas enfermedades pulmonares. Algunas de ellas, como la fibrosis pulmonar idiopática, presentan una alta mortalidad, y los tratamientos disponibles para abordarlas retrasan la evolución de la patología, pero no la revierten. Por ello, detectar los cambios tempranos en el tejido pulmonar antes de que la enfermedad progrese es un reto clave.

Investigadores del CIBER-BBN en la Universidad Politécnica de Madrid (UPM) han dado un paso adelante en este camino, al proponer un nuevo método de análisis de datos que permite detectar con gran precisión anomalías sutiles en el tejido funcional del pulmón –llamado parénquima pulmonar– a partir de un TAC.

Este nuevo método de inteligencia artificial, basado en el aprendizaje profundo (deep learning) aplicado al análisis de imágenes de TAC, permite identificar y clasificar cambios radiográficos que preceden al desarrollo de la enfermedad pulmonar con mucha más precisión que otros procedimientos anteriores, y ha demostrado también su capacidad de generalización para aplicarse a grandes cohortes de pacientes para diagnosticar las patologías pulmonares intersticiales en una fase temprana.

El rendimiento de este método incluyó una sensibilidad promedio superior al 91% y una especificidad promedio del 98%. "Esto implica que es potencialmente viable para identificar patrones radiográficos que anticipan la enfermedad intersticial pulmonar y para aplicarse al diagnóstico automático de grandes grupos de pacientes", destaca David Bermejo-Peláez, investigador del CIBER-BBN y primer firmante de este trabajo, publicado en la revista científica Scientific Reports.

Detección precoz de la enfermedad pulmonar intersticial

Las enfermedades intersticiales pulmonares (ILD) son un grupo heterogéneo de más de 200 trastornos del pulmón que afectan en gran medida el parénquima pulmonar y que también pueden presentar manifestaciones vasculares o de las vías respiratorias. Algunas de estas patologías, entre las que se encuentra la fibrosis pulmonar idiopática, pueden estar precedidas de hallazgos radiográficos tempranos (anormalidades pulmonares intersticiales), que pueden detectarse en un TAC.

CIBER BBN tejido pulmonar fumadoresHasta el momento, se habían propuesto varios métodos avanzados para la identificación automática de la enfermedad pulmonar intersticial, pero ninguno centrado en la detección de estos primeros cambios sutiles que afectan al parénquima. El grupo de investigación del CIBER-BBN y la UPM, en estrecha colaboración con el Applied Chest Imaging Laboratory en Brigham and Women’s Hosptial (Boston), se centró en la búsqueda de una técnica viable basada en el análisis de datos para identificar estos patrones radiográficos que preceden el desarrollo de estas dolencias.

Análisis de datos de imagen

"En este trabajo aportamos el primer método basado en deep learning para identificar y clasificar patrones radiográficos de enfermedad pulmonar intersticial en etapas tempranas en imágenes de tomografía computarizadas, considerando ocho clases radiográficas de tejido pulmonar", explica María Jesús Ledesma, investigadora del CIBER-BBN y firmante del trabajo.

Los científicos propusieron una nueva metodología para detectar y clasificar de manera automática estos patrones, basada en un conjunto de redes neuronales convolucionales profundas e incorporando arquitecturas de 2D, 2,5D y 3D. Este tipo de redes neuronales artificiales, que tratan de imitar el comportamiento del cerebro humano a la hora de aprender y extraer características de forma jerárquica, al igual que lo hace la corteza visual del cerebro, son muy efectivas para tareas de visión artificial y en la clasificación y segmentación de imágenes, y han mostrado su capacidad para resolver problemas de clasificación de imágenes utilizando modelos jerárquicos que ordenan millones de parámetros a partir de un aprendizaje basado en grandes bases de datos.

Para entrenar y probar el sistema, los investigadores utilizaron un total de 37.424 muestras de tejido radiográfico correspondientes a ocho clases distintas de características del tejido pulmonar de 208 tomografías computarizadas. Los datos que se han usado en este estudio provienen del proyecto COPDGene.

Según subrayan los investigadores, "son necesarios nuevos diseños e investigaciones que permitan abordar la identificación de estos cambios precoces en el parénquima pulmonar".

Cuantificación de lesiones pulmonares por COVID-19

Por último, cabe destacar que esta tecnología ha servido de base para un nuevo desarrollo que permite la cuantificación de lesiones pulmonares debidas a la enfermedad COVID-19. Estas nuevas tecnologías están siendo evaluadas actualmente en el marco de un estudio multicéntrico (PREDICT-COVID19) en colaboración con el Hospital Universitario La Paz, el Hospital Universitario Fundación Jiménez Díaz, la Clínica Universidad de Navarra, el Hospital Clínic de Barcelona, la empresa Spotlab y el ya mencionado Applied Chest Imaging Laboratory del Brigham and Women’s Hospital, Harvard Medical School.

Artículo de referencia:

David Bermejo-Peláez, Samuel Y. Ash, George R. Washko, Raúl San José Estépar and María J. Ledesma-Carbayo. Classification of Interstitial Lung Abnormality Patterns with an Ensemble of Deep Convolutional Neural Networks. Sci Rep. 2020; 10: 338. Published online 2020 Jan 15. doi: 10.1038/s41598-019-56989-5

 



Deja un comentario

Recordamos que SALUD A DIARIO es un medio de comunicación que difunde información de carácter general relacionada con distintos ámbitos sociosanitarios, por lo que NO RESPONDEMOS a consultas concretas sobre casos médicos o asistenciales particulares. Las noticias que publicamos no sustituyen a la información, el diagnóstico y/o tratamiento o a las recomendaciones QUE DEBE FACILITAR UN PROFESIONAL SANITARIO ante una situación asistencial determinada.

SALUD A DIARIO se reserva el derecho de no publicar o de suprimir todos aquellos comentarios contrarios a las leyes españolas o que resulten injuriantes, así como los que vulneren el respeto a la dignidad de la persona o sean discriminatorios. No se publicarán datos de contacto privados ni serán aprobados comentarios que contengan 'spam', mensajes publicitarios o enlaces incluidos por el autor con intención comercial.

En cualquier caso, SALUD A DIARIO no se hace responsable de las opiniones vertidas por los usuarios a través de los canales de participación establecidos, y se reserva el derecho de eliminar sin previo aviso cualquier contenido generado en los espacios de participación que considere fuera de tema o inapropiados para su publicación.


*Campos obligatorios.